

Echo Locator - NXT

Suggested Time

90 minutes

Challenge

In this activity, use an NXT equipped with either a proximity sensor, a light sensor, or a motor to develop an echo locator. Similar to a bat with a sonar echolocator, this uses ultrasonic waves, light, or rotations to measure distance, with sound used as feedback.

Age

15 - 18

Topics

Programming

Subjects

Technology

Programming
Themes

Containers, Jumps / Lands, Play Any Note

Materials

- NXT
- Light Sensor
- Proximity Sensor
- Motor

Building Instructions

- 1. Follow either step 2, 3, or 4.
- 2. Attach a light sensor to the NXT and wire to an NXT input.

3. Attach a proximity sensor to the NXT and wire to an NXT input.

4. Attach a motor to the NXT and wire to an NXT output.

Page 2 of 3

Programming Instructions

- 1. Choose your programming instructions based on the sensor you chose in the building instructions.
- 2. **Light Sensor Programming Instructions:** Using the LEGO NXT Software, write a program that allows your light sensor value to be multiplied in order to determine pitch.

3. **Proximity Sensor Programming Instructions:** Using LEGO NXT Software, write a program that allows your proximity sensor value to be multiplied in order to determine pitch.

4. Rotation Sensor (Motor) Programming Instructions: Using LEGO NXT Software, write a program that allows your rotation value to be multiplied in order to determine pitch.

Programming Hints: The light, proximity, or rotation value will need to be multiplied by a factor to create frequency humans can hear. Start with a multiplier of 100 and experiment to see how other values affect the pitch.