{"id":904,"date":"2013-06-11T22:25:37","date_gmt":"2013-06-11T12:25:37","guid":{"rendered":"http:\/\/legoeng.local\/?p=904"},"modified":"2017-09-07T16:12:09","modified_gmt":"2017-09-07T06:12:09","slug":"real-world-engineering-using-the-nxt-for-earthquake-simulation","status":"publish","type":"post","link":"http:\/\/legoeng.local\/real-world-engineering-using-the-nxt-for-earthquake-simulation\/","title":{"rendered":"Real world engineering: Using the NXT for earthquake simulation"},"content":{"rendered":"

Earthquakes are not all alike, and are identified by their strength on the Richter Scale of magnitude. The seismic waveforms generated during a quake depend on many factors including including fault geometry and rock type, wave travel path, soil composition, nearby mountains and other geological structures, and location of the origin of the quake.<\/p>\n

\"earthquake\"<\/a><\/p>\n

The interaction of an earthquake with a structure is modeled by engineers, particularly civil or structural engineers, to produce the Response Spectrum for that particular quake. The Response Spectrum is a measure of how much a structure will respond to that particular earthquake and depends on the stiffness and mass of the structure and its damping. When an engineer wishes to perform a test on a structure in the laboratory, he or she defines a Required Response Spectrum, or RRS. This RRS can then be used to create a motion in the lab to simulate a quake based on its particular wave patterns, allowing for further study through the reproduction of the original motions. The equipment that reproduces these motions is called a shake table. RRS are typically used when a quick description of the earthquake is needed, as they clearly indicate what effects a certain waveform will have on a certain building.<\/p>\n

Real world engineering: ANCO earthquake simulation<\/h2>\n

ANCO Engineers, Inc. (ancoengineers.com) is a producer of custom-built shake tables and portable vibration testing equipment since the company’s establishment in 1971. ANCO’s seismic shake tables are used to simulate the vibrations of an earthquake in a safe and controlled manner. These tables can move in three dimensions and vibrate to realistically reproduce earthquake motions and the RRS. This simulation is useful for the investigation of engineering problems related to maintaining safety during an earthquake. This includes ensuring the stability of structures such as hanging fixtures, the attachment of shelving and other fixtures to walls, and ensuring that any furniture present will not tumble about in the event of an earthquake or any moderate to severe vibrational force.<\/p>\n

In industry, for example, shake tables are used to assure that the safety equipment in a nuclear power plant will perform correctly during and after an earthquake. Some specially designed earthquake simulators can be used in public locations, such as museums or universities, in order to give observers — and, in some cases, riders — an idea of what a real earthquake entails. Demonstrations may include visual, auditory, and even tactile information as such systems may be designed with the capability to carry human passengers safely during the earthquake simulation sequence.<\/p>\n

\u00a0\"a1\"<\/a> \"a2\"<\/a><\/p>\n

ANCO Hydraulic Shake Table (left); ANCO All-Electric Shake Table (right)<\/em><\/p>\n

ANCO engineers used LabVIEW, a graphical programming software produced by National Instruments, to provide a realistic model of an earthquake for testing and observation in public venues containing a shake table. LabVIEW is used to play a series of recorded earthquakes through the table to show how variable they are. The engineers took advantage of LabVIEW’s spectral analysis capabilities to generate waveforms of a quake based on an experimentally recorded RRS. The generated waveform is then put through filters and other signal processing to produce a more accurate model of earthquake motion. This process is automated, making earthquake simulation relatively quick and easy as long as the RRS data or time history is available.<\/p>\n

A companion LabVIEW program controls two or more long stroke (12″) displacement actuators while streaming audio and video through a dual VGA output. During the vibrational simulation of an earthquake, this video can be projected onto a screen and the audio can be played back to create a more immersive experience for any onlookers. The use of fog machines, flashing lights, and sound effects can also enhance the realism of the situation and more readily grab the attention of passersby in a public setting.<\/p>\n

Users can tap into these programs to generate earthquake simulations with specific frequency energy signatures that also account for factors such as soil composition and resonance (caused by the swaying of a building or structure at certain characteristic frequencies or “resonances”). A GUI (graphical user interface) allows for the use of this software control with relatively little training. To further keep control of the system simple, a library of approximately 50 earthquake scenarios can be dragged and dropped to form short sequences up to several minutes in length. These are then played back for an audience in order to showcase the effects of that particular generated earthquake, sometimes using a miniature city on the shake table to make the experience more tangible.<\/p>\n

As previously mentioned, some shake tables manufactured by ANCO are safe for humans to experience – that is, people can sit or stand on the table and actually feel the vibrations of a simulated earthquake. This can promote earthquake readiness and awareness by familiarizing the subjects to a quake’s effects.<\/p>\n

Earthquake simulation using the LEGO NXT<\/h2>\n

\"b\"<\/a><\/p>\n

Completed earthquake simulator<\/em><\/p>\n

The main considerations when transitioning from an industrially manufactured shake table to a student-accessible shake table are keeping cost to a minimum, making sure building time and effort are reasonably small, and ensuring that any programming and operation necessary is relatively simple and easy to do. The scale of the earthquake simulator also must dramatically change if the project is to be completed quickly and easily, especially in a classroom setting where space is often very limited.<\/p>\n

As a solution to this transition, LEGO bricks were used as a building material, and LEGO Mindstorms NXT was used as a means of programming the earthquake simulator.<\/p>\n

Building<\/h3>\n